

Discussion on Power Module Solutions for 200kW Power Converter System in Energy Storage System

Dong jie, Hao xin, Infineon

1	Introduction	3
2	Power Converter System	5
3	Module Solution and Comparison	6
4	Experiment Result	7
5	PLECS Simulation	8
6	Conclusion	9

1	Introduction	3
2	Power Converter System	5
3	Module Solution and Comparison	6
4	Experiment Result	7
5	PLECS Simulation	8
6	Conclusion	9

Energy Storage System (ESS)

 Renewable energy source(PV & Wind): volatility and large-scale access

Energy Storage System

- > Reduce power fluctuations
- > Improve power quality
- > Reduce the impact of renewable energy on grid

1	Introduction	3
2	Power Converter System	5
3	Module Solution and Comparison	6
4	Experiment Result	7
5	PLECS Simulation	8
6	Conclusion	9

PCS topology: two level

Output power: Pout	200kW
Switching frequency: <i>f</i> _{sw}	16kHz
DC voltage: V _{DC}	1340V
AC voltage: V _{AC}	690V

Conventional topology Power device faces high voltage request

PCS topology: three level

Output power: <i>P</i> out	200kW
Switching frequency: <i>f</i> _{sw}	16kHz
DC voltage: V _{DC}	1340V
AC voltage: V _{AC}	690V

 Operate with higher voltage
Reduce the volume and cost of magnetic elements in higher frequency

Harmonics can be optimized

PCS Topology

		Advantage	Disadvantage	
		Simple control	High voltage	
Two level converters		Less	stress	NPC2
		component	High harmonics	
	NPC1	Low voltage	Complex control	
Three level	NPC2	stress	More	
converters	ANPC	Low harmonics	component	
				NPC1

ANPC

PCS Modulation Method

modulation ratio M

$$M = \frac{V_{AC} / \sqrt{3}}{V_{DC} / 2}$$

* V_{AC} is the AC line-voltage for three phase system and V_{DC} is the DC bus voltage

1	Introduction	3
2	Power Converter System	5
3	Module Solution and Comparison	6
4	Experiment Result	7
5	PLECS Simulation	8
6	Conclusion	9

Module Solution and Comparison

Module Solution and Comparison

Module Solution and Comparison

	Topology	Package	Parallel condition
FF6MR20W2M1H_B70	Half-bridge	Easy2B	2 in parallel
F3L400R10W3S7_C25	NPC1	Easy3B	No parallel
F3L225R12W3H3_B11	NPC1	Easy3B	2 in parallel
F3L4MR12W3M1H_B11	ANPC	Easy3B	2 in parallel

	Chips
FF6MR20W2M1H_B70	2000V/6mohm SiC
	T1/2/3/4: 950V/400A
F3L400R10W3S7_C25	D1/2/3/4: 950V/300A
	D5/D6: 950V/200A
	T1/2/3/4: 1200V/225A
F3L225R12W3H3_B11	D1/4/5/6: 1200V/300A
	D2/3: 1200V/200A
	T2/3:1200V/4mohm SiC
F3L4MR12W3M1H_B11	T1/4/5/6: 1200V/150A
	D1/4/5/6: 1200V/150A

1	Introduction	3
2	Power Converter System	5
3	Module Solution and Comparison	6
4	Experiment Result	7
5	PLECS Simulation	8
6	Conclusion	9

F3L225R12W3H3_B11 Double Pulse Test

200kW module simulation model

The model includes conduction loss, switching loss, thermal chain and etc.

F3L225R12W3H3_B11 Double Pulse Test

V _{BUS}	700V
I _{CE}	115A
R_{gon}	7.5Ω
R _{goff}	5Ω

The red line is V_{CF} curve, green line is I_{CF} curve and blue line

> Home > Products > Power > MOSFET (Si/SiC) > Silicon Carbide CoolSiCTM MOSFET > Silicon Carbide MOSFET Discretes > IMZ120R030M1H

Overview	Design Support			
Diagrams				
Parametrics	Search for a topic		Q	Clear All
Documents	Application	Туре		
Order	Please select	✓ Please select		
Design Support				
Training	All (3) Boards & Designs (1)	Simulation Models (1) Simulation Te	ools (1)	
Support	zip			Download
	MOSFET CoolSiC TM 01_03 2022-06-21 7	1200 V 8 KB		Share > EN

1	Introduction	3
2	Power Converter System	5
3	Module Solution and Comparison	6
4	Experiment Result	7
5	PLECS Simulation	8
6	Conclusion	9

Turn-off Loss

PLECS model

Turn-on Loss

PLECS model

Conduction Loss

Thermal Chain

PLECS Simulation Example

PLECS Simulation Results

- If the V_{DC} can be reduced to 1200V, then the temperature can be limited under 140°C

PLECS Simulation Results

PF=1

Highest efficiency, can save the operation cost.

PF=-1

- Smallest module size
- The number of control signals and driver circuits are reduced to simplify the system structure

1	Introduction	3
2	Power Converter System	5
3	Module Solution and Comparison	6
4	Experiment Result	7
5	PLECS Simulation	8
6	Conclusion	9

The Advantage and Disadvantage

	Advantages	Disadvantages
FF6MR20W2M1H_B70	Small module size;	Low officionov:
	High power factor;	Low enciency,
	Less support circuit	High harmonics
E31 400 P10 W287 C25	Single module;	Limited condition
F3E400K10W3S7_C25	High power factor	
F3L225R12W3H3_B11	Cost-effective	Easy3B in parallel
F3L4MR12W3M1H_B11	High efficiency	Complex control method; in parallel

- FF6MR20W2M1H_B70 can achieved simplest circuit and control method.
- F3L400R10W3S7_C25 can achieve 200kW in single module,
- F3L4MR12W3M1H_B11 which is SiC MOSFET hybrid module can provide the highest efficiency.
- F3L225R12W3H3_B11 is designed for 200kW PCS, which is the most cost-effective for this application

